Publicações

Dissertação de Mestrado (2009)

Impacto do Efeito da Quebra de Ondas Oceânicas na Estrutura da Camada Limite Atmosférica.

Neste trabalho foi construído um modelo numérico unidimensional de Camada Limite Planetária (CLP), com a Camada de Limite Superficial  segundo a teoria de similaridade e os coeficientes de difusividade extrapolados ate o topo da CLP. Os processos físicos do arrasto das ondas e da produção de gotículas na atmosfera foram implementados no modelo com o intuito de compreender e avaliar seus efeitos (transporte de momentum e calor) na estrutura da CLP.

Artigo Científico (2010)

The Impact of Spume Droplets and Wave Stress Parametrizations on Simulated Near-Surface Maritime Wind and Temperature.

The influence of ocean gravity waves on the wind and temperature above the surface is investigated using a one-dimensional boundary layer model. The effect of the wave-induced stress is evaluated using three parameterizations: wave age (WaAg), wave steepness (WaSt), and wind action on the wave spectrum (WiAc). It is found that while the WaAg is more effective in reducing the wind for young waves, in the WaSt approach the maximum reduction is for old waves. On the other hand, the WiAc is very sensitive to the energy present in high frequencies corresponding to periods less than 2 s, which are found in both young and mature spectra. Since observations show that most of the wave stress is due to the small-period wave energy, in this aspect the WaSt parameterization is not recommended; WaAg is not as accurate; and thus WiAc is the best among the three, although its computational cost is the highest.

Tese de doutorado (2014)

Parametrizações dos Efeitos da Quebra de Ondas Oceânicas e Gotículas na Modelagem Numérica dos Processos de Troca de CO2, Momentum e Calor na Interface Oceano-Atmosfera.

Essa pesquisa teve como objetivos (i) avaliar, na presença de ondas, os efeitos da rugosidade do mar, da separação do escoamento do ar, da superfície de abrigo  e da produção  de gotículas espumas na  transferências de momentum e gás na interface ar-mar utilizando um modelo unidimensional de camada limite, (ii) construir um modelo fortemente acoplado oceano-atmosfera e (iii) utilizar o modelo acoplado para estudar os efeitos das parametrizações de gotículas e do desenvolvimento do mar na evolução, dissipação e trajetórias de ciclones. Foram desenvolvidas parametrizações  que quantificam o efeito das gotículas no balanço de CO2 na interface ar-mar.

Artigo Científico (2018)

Analytical Quantification of Carbon Dioxide Exchange Mediated by Spume Droplets

The role of spume droplets in the air–sea exchange of CO2 is investigated by applying simultaneous rate equations for the mass of dissolved CO2, radius, and temperature of a droplet. The life of a droplet can be divided into two phases, except when the air is saturated, and when the air and sea temperatures are the same. In the first phase, the CO2 fluxes at the droplet surface and at the air–sea interface are in the same direction. In the second phase, the air–droplet CO2 gradient vanishes, and the droplet loses water and CO2 as long as there is evaporation. The largest sea–air CO2 transfer by the droplets is in the case where the sea temperature is greater than the air temperature, and the air–sea CO2 concentration gradient is towards the air. The net transfer of CO2 for a droplet depends on its lifetime, which is longer for smaller droplets. The overall role of a droplet spectrum is assessed assuming a sea-spray generation function for radii from 30 to 500 μm, whose formulation of its dependence on the surface-wave peak period and 10-m wind speed is currently accepted; for situations with an air–sea CO2 concentration gradient towards the air and a warmer sea than the air, the overall transfer obtained is towards the sea. The effect of the turbulence is analyzed by increasing the droplet lifetime by a factor of 10, which increases the CO2 flux towards the sea for droplet spectra composed mainly of small droplets (generated by waves with small peak period). However, the mean droplet size is larger for droplets generated by waves with a high peak period, and then the flux is towards the air because many large droplets reach the second phase. Acesse agora: 10.1007/s10546-018-0369